网站首页 >> 未命名 >> 正文
简介: 所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα k∈z cos(2
所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα k∈z cos(2kπ+α)=cosα k∈z tan(2kπ+α)=tanα k∈z cot(2kπ+α)=cotα k∈z 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα 推算公式:3π/2±α与α的三角函数值之间的关系: sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα 诱导公式记忆口诀:“奇变偶不变,符号看象限”。  “奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。 符号判断口诀: “一全正;二正弦;三两切;四余弦”。这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内只有正切和余切是“+”,其余全部是“-”; 第四象限内只有余弦是“+”,其余全部是“-”。 “ASCT”反Z。意即为“all(全部)”、“sin”、“cos”、“tan”按照将字母Z反过来写所占的象限对应的三角函数为正值。

温馨提示:本文是作者 panpan39 的原创文章,转载请注明出处和附带本文链接!

相关文章

网友点评

本文暂无评论 - 欢迎您

六班网

六班网

www.6ban.cn

sitemap网站地图

Copyright @ 2019-2021 六班数学网 All Rights Reserved.

本站所发表的文章版权归作者所有,转载或抄袭他人作品,带来的后果与本站无关。若存在您非授权的原创作品,请第一时间联系本站删除

切换白天模式 切换夜间模式 白天返回顶部 夜间返回顶部