网站首页 >> 未命名 >> 正文
简介: 如图,P为平行四边形ABCD的边AD上的一点,E,F分别为PB,PC的中点,△PEF,△PDC,△PAB的面积分别为S,S1,S2.若S=3,则S1+S2的值为(  ) A.24 B.

如图,P为平行四边形ABCD的边AD上的一点,E,F分别为PB,PC的中点,△PEF,△PDC,△PAB的面积分别为S,S1,S2.若S=3,则S1+S2的值为(  )

 

E,F分别为PB,PC的中点   解:过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB, E,F分别为PB,PC的中点 ∴四边形PQCD与四边形APQB都为平行四边形, ∴△PDC≌△CQP,△ABP≌△QPB, ∴S△PDC=S△CQP,S△ABP=S△QPB, ∵EF为△PCB的中位线, ∴EF∥BC,EF=BC, ∴△PEF∽△PBC,且相似比为1:2, ∴S△PEF:S△PBC=1:4,S△PEF=3, ∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=S1+S2=12. 故选:B .

温馨提示:本文是作者 panpan39 的原创文章,转载请注明出处和附带本文链接!

相关文章

网友点评

本文暂无评论 - 欢迎您

六班网

六班网

www.6ban.cn

sitemap网站地图

Copyright @ 2019-2021 六班数学网 All Rights Reserved.

本站所发表的文章版权归作者所有,转载或抄袭他人作品,带来的后果与本站无关。若存在您非授权的原创作品,请第一时间联系本站删除

切换白天模式 切换夜间模式 白天返回顶部 夜间返回顶部